PROTEÓMICA y SAF

Maria Josė Cuadrado Lupus Research Unit St. Thomas' Hospital London UK

Aknowledgments

Chary López-Pedrera Angeles Aguirre Francisco Velasco Hospital "Reina Sofia", Córdoba, España

Laura Bertolaccini Munther Khamashta

St Thomas' Hospital, London, UK

PROTEOMIC

- Protein separation methods (One-twodimensional gel electrophoresis or mas spectroscopy)
- Detection methods using a non-specific staining
- Quantification by densitometry
- Validation of proteomic data by Western blot and quantitative real time RT-PCR

OBJECTIVE

To analyze the expression of some proteins in monocytes of patients with APS which might be involved in the pathogenesis of thrombosis

PATIENTS CHARACTERISTICS

APS T (+) (n=32)	APS T (-) (n=19)	T aPL (-) (n=20)	Healthy (n=15)
23/9	19/0	12/8	9/6
39±12	34±9	48±11	30±7
13(41%)	0	10(50%)	0
20(63%)	0	10(50%)	0
3(9%)	19(100%)	0	0
25(77%)	8(40%)	0	0
17(54%)	11(55%)	0	0
23(73%)	13(67%)	0	0
	$(n=32)$ $23/9$ 39 ± 12 $13(41\%)$ $20(63\%)$ $3(9\%)$ $25(77\%)$ $17(54\%)$	$\begin{array}{c} (n=32) & (n=19) \\ \hline 23/9 & 19/0 \\ 39\pm12 & 34\pm9 \\ \hline 13(41\%) & 0 \\ 20(63\%) & 0 \\ 3(9\%) & 19(100\%) \\ \hline 25(77\%) & 8(40\%) \\ 17(54\%) & 11(55\%) \end{array}$	$(n=32)$ $(n=19)$ $(n=20)$ $23/9$ $19/0$ $12/8$ 39 ± 12 34 ± 9 48 ± 11 $13(41\%)$ 0 $10(50\%)$ $20(63\%)$ 0 $10(50\%)$ $3(9\%)$ $19(100\%)$ 0 $25(77\%)$ $8(40\%)$ 0 $17(54\%)$ $11(55\%)$ 0

METHODS

Protein Expression by Groups

Protein	APS T(+)	APS T(-)	T aPL(-)	CV
Anexin I	180±37	97±20	113±5	22%
Anexin II	221±52	105±30	97±11	18%
Rho A	378±48	127±15	123±29	20%
Ubiquitin like nedd8	887±65	101±18	98±19	15%
PDI	23±6	89±3	93±10	12%
HSP 60KD	52±8	89±10	92±16	14%

RESULTS *In vivo* studies

RESULTS *In vivo* studies

RESULTS

Confirmatory analysis by Western blot and RT-PCR

Results: In vitro studies

Figure 4

Summary

Upregulation

- Anexin I
- Annexin II
- Ubiquitin nedd8
- Rho A

Downregulation

- PDI
- HSP 60Kd

Contribution to hypercoagulability

Tissue Factor

Tissue Factor overexpression

Lopez-Pedrera Ch, Arthritis Rheum 54:301-11; 2006

Contribution to hypercoagulability

Increased expression of A1 leads to constitutive activation of ERK1/2 in RAW macrophages.We have found that the upregulation of A1 in APS monocytic cells was accompanied by constitutive activation of the MEK/ERK pathway. Involved in TF overexpression

A2 is a receptor for fibrinolytic activation. It has been demonstrated that binding of β_2 GPI to human umbilical vein endothelial cells is mediated by A2. It is a target for anti- β_2 GPI antibodies. Involved in TF overexpression

Contribution to hypercoagulability

Vascular Smooth Muscle

Rho A plays critical roles in inflammatory signal transduction cascades, such as those required for the activity of NFκB. In addition it has been demonstrated that inhibition of Rho/Rho kinase proteins downregulates the synthesis of TF.

Ubiquitin Nedd8 is involved in the proteolytic destruction of IkB (inhibitor of NFkB), which allows nuclear translocation of free **NF**κ**B**, thus leading to activation of a multitude of target genes.

Contribution to hypercoagulability

PDI is associated with TF when coagulant activity is low and TF-VIIa signaling is enabled. Decreased PDI expression is associated with an increase inTF procoagulant activity

Hsp60 is present in the blood during inflammation, and has been found to be a target of autoantibodies and autoimmune T cells in healthy individuals, as well as those suffering from autoimmune diseases

Conclusions

- This study has identified altered expression of proteins that might be directly related to thrombotic events in APS.
- It has also showed that all proteins necessary for monocyte-induced procoagulant activity are specifically altered in their expression in response to aPL.
- The different protein-expression patterns identified in patients with and without thrombosis might define different subgroups of APS patients.

Next Step

- Study differences in protein expression in subgroup of APS patients (arterial vs venous vs obstetric APS)
- Prospective study to investigate if protein pattern is predictive of phenotype/risk of events in aPL positive patients