The Effect of Glucose Lowering Therapies on CV Outcomes

Hertzel C. Gerstein MD MSc FRCPC

Professor and Population Health Institute Chair in Diabetes Research McMaster University and Hamilton Health Sciences Hamilton, Ontario, Canada

Disclosures

- Advisory Panel Honoraria: Sanofi, Eli Lilly, Novo Nordisk, Bl, AZ/BMS, GSK
- Consultant Honoraria:
- Speaker Honoraria:
- Research Support:

Sanofi, Eli Lilly, Roche

Sanofi

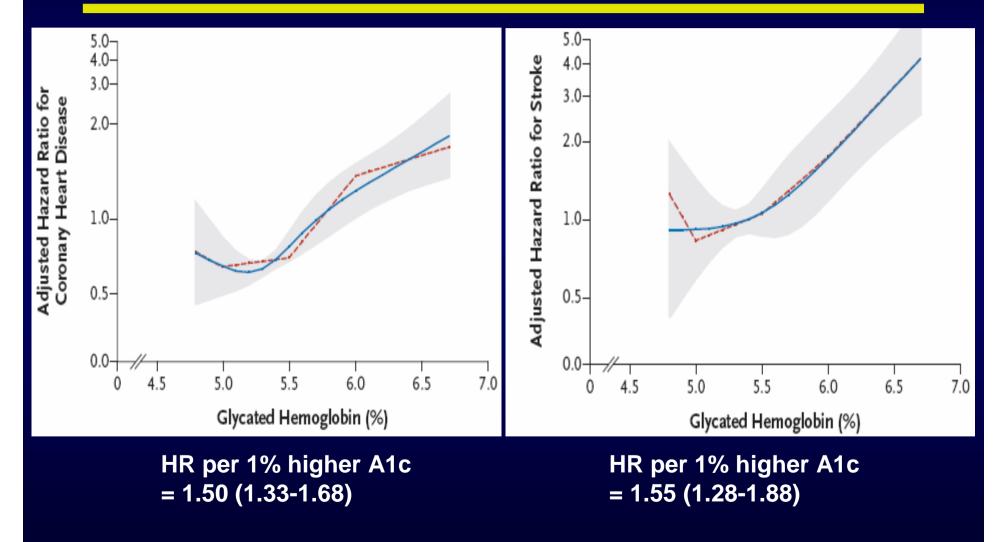
(to PHRI) Sanofi, Eli Lilly

The Effect of Glucose Lowering Therapies on CV Outcomes

The Evidence

Outline

- Dysglycemia & Cardiovascular Outcomes
- The Best Evidence re:
 - Glucose Lowering Intensity
 - Glucose Lowering Approaches
- Summary



DM & the Risk of CV Outcomes

		115. /	
	Number	HR (95% CI)
	of cases		
Commune hourt discours*			2.00 (1.92. 2.10)
Coronary heart disease*	26 505		2.00 (1.83–2.19)
Coronary death	11 556		2·31 (2·05–2·60)
Non-fatal myocardial infarction	14741		1.82 (1.64–2.03)
Stroke subtypes*			
Ischaemic stroke	3799	e	2·27 (1·95–2·65)
Haemorrhagic stroke	1183		1.56 (1.19–2.05)
Unclassified stroke	4973	_	1·84 (1·59–2·13)
Other vascular deaths	3826	_	1.73 (1.51–1.98)
HR adj. for age, sm	oking,		
BMI, SBP		1 2	4

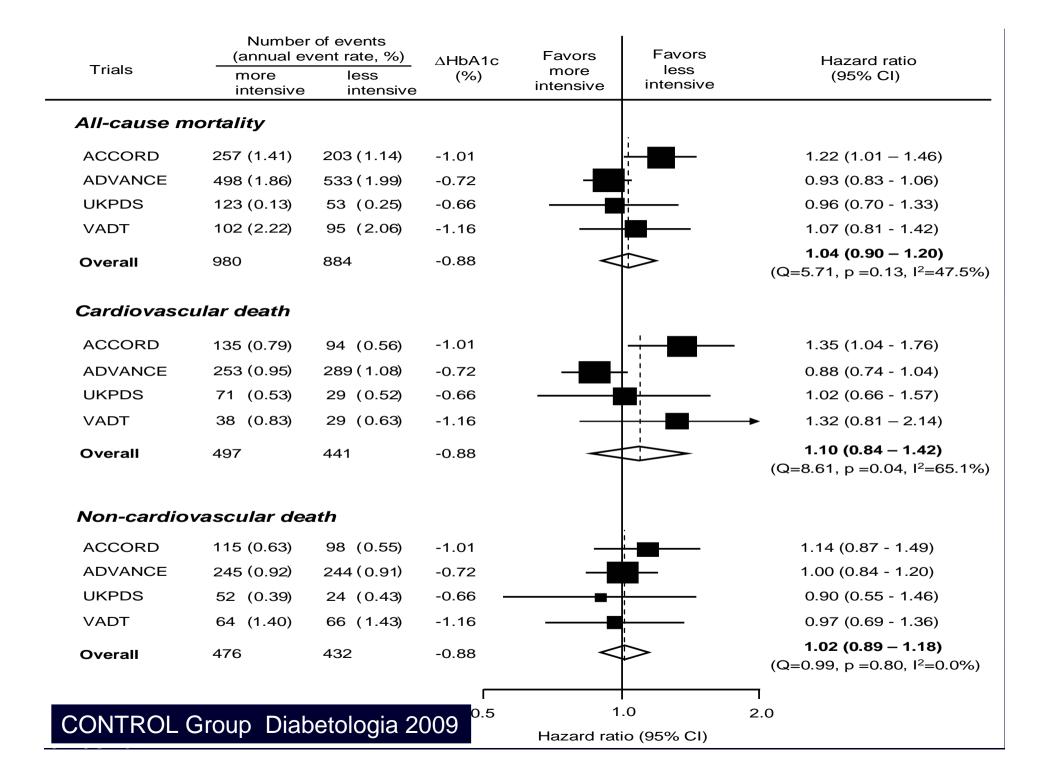
Lancet 2010; 2215 (102 prospective studies, 700K people, 8.5M p-years f/u)

A1c & CV Outcomes: General Pop'n No History of DM or CVD

Selvin et al. NEJM 2010; 362:800

Outline

- Dysglycemia & Cardiovascular Outcomes
- The Best Evidence re:
 - Glucose Lowering Intensity
 - Glucose Lowering Approaches
- Summary



Type 2 DM: G Lowering Trials ACTIVE Rx PHASE

Study	Duration N		Glycemia		
	(yrs)		Target	Achieved	
UKPDS	10	3867	FPG < 6 (110)	A1C = 7.0% vs. 7.9%	
ACCORD	3.5	10251	A1C < 6.0%	A1C = 6.4% vs. 7.5%	
ADVANCE	5	11140	A1C < 6.5%	A1C = 6.5% vs. 7.3%	
VADT	6.3	1791	A1C < 6.0%	A1C = 6.9% vs. 8.4%	

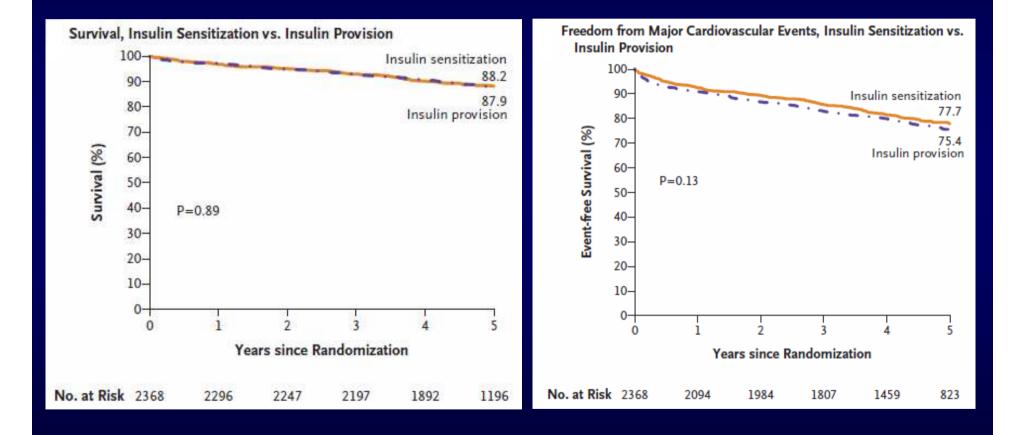
Effect of > 4 y of Glucose Lowering on CV Events in Type 2 Diabetes

CVD	Effect	Effect Size	Age (y)	F/U (y)	Evidence
МІ	Reduced	0.85 (0.76, 0.94)	53-66	3.5-5.6	Meta-analysis
MACE	Reduced	0.91 (0.84, 0.99)	53-66	3.5-5.6	Meta-analysis
CHF	No Effect	N/A	53-66	3.5-5.6	Meta-analysis
Stroke	No Effect	N/A	53-66	3.5-5.6	Meta-analysis
PAD	No Effect	N/A	53	12	UKPDS
	No Effect	N/A	53-66	3.5-5.6	Meta-analysis
CV Death	Increased	1.29 (1.04, 1.60)	62	5	ACCORD
	No Effect	N/A	53-66	3.5-5.6	Meta-analysis
Death	Reduced	0.87 (0.79, 0.96)	53	17	UKPDS
	Increased	1.19 (1.03, 1.38)	62	5	ACCORD
HCG 2014		Gerstein	, Lancet Diab	etes & Endoc	rinology, 2013 (1): 7

Outline

- Dysglycemia & Cardiovascular Outcomes
- The Best Evidence re:
 - Glucose Lowering Intensity
 - Glucose Lowering Approaches
 - Menu of Drugs
 - Single Drugs

Summary


BARI 2D Trial

Participants: N=2368 with type 2 DM (30% female; mean age = 63; median A1C = 7.7%, mean DM duration 10.4 years)

Angiographically proven CAD with symptoms

- Stratification: best treated with PCI (1605) or CABG (763)
- Allocation: a) insulin sensitization vs. provision
 b) medical Rx vs. revascularization
- Mean F/U: 5.3 years

Combinations of Insulin Sensitizing vs. Insulin Providing Drugs: BARI 2D

NEJM 2009; 360:2503

Outline

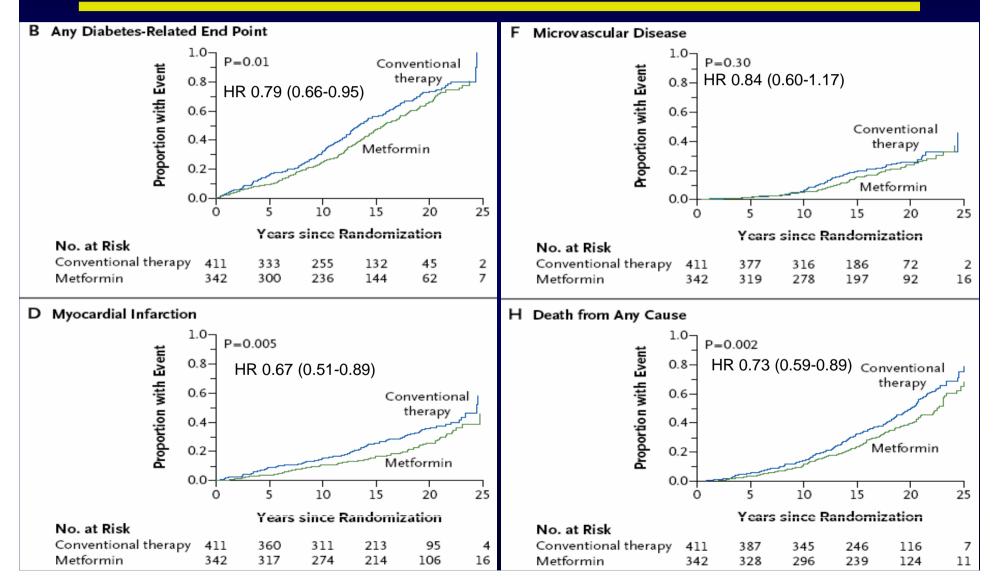
- Dysglycemia & Cardiovascular Outcomes
- The Best Evidence re:
 - Glucose Lowering Intensity
 - Glucose Lowering Approaches
 - Menu of Drugs
 - Single Drugs

Summary

Glucose Lowering Drugs & Outcomes

- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide



Glucose Lowering Drugs & Outcomes

- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide

Metformin & Outcomes: New T2DM UKPDS F/U NEJM 2008;359:1-13

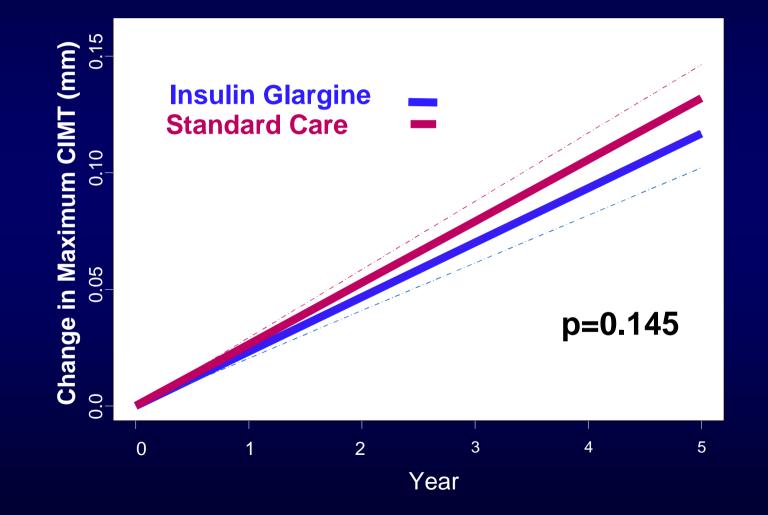
Glucose Lowering Drugs & Outcomes

- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide

ORIGIN: Primary & Secondary Outcomes & their Components

	HR (95% CI)	Р		Insulin /100 py	Standard /100 py
1 st Coprimary	1.02 (0.94, 1.11)	0.63		2.94	2.85
2 nd Coprimary	1.04 (0.97, 1.11)	0.27		5.52	5.28
Microvascular	0.97 (0.90, 1.05)	0.43		3.87	3.99
Death	0.98 (0.90, 1.08)	0.70		2.57	2.60
MI	1.02 (0.88, 1.19)	0.75		0.93	0.90
Stroke	1.03 (0.89, 1.21)	0.69		0.91	0.88
CV Death	1.00 (0.89, 1.13)	0.98		1.57	1.55
CHF Hospital	0.90 (0.77, 1.05)	0.16		0.85	0.95
Revascularized	1.06 (0.96, 1.16)	0.24	- 	2.69	2.52
HCG 2014	Favors Ins	sulin 🔶	11	2 → Favors	Standard


 \bigcirc

Additional Outcomes

 \bigcirc

	HR (95% CI)	Р	I		Insulin /100 py	Standard /100 py
Angina	0.95 (0.85, 1.05)	0.29		-	2.07	2.17
Unstable	0.91 (0.76, 1.08)	0.28			0.66	0.72
New angina	0.72 (0.56, 0.93)	0.01			0.27	0.38
Worsening	1.02 (0.89, 1.16)	0.80		-	1.29	1.26
Amputation	0.89 (0.60, 1.31)	0.55			0.13	0.14
CV Hosp	1.00 (0.95 <i>,</i> 1.07)	0.90		•	6.98	6.91
Non-CV Hosp	0.99 (0.94, 1.05)	0.85			7.90	7.93
Any Cancer	1.00 (0.88, 1.13)	0.97		-	1.32	1.32
Cancer Death	0.94 (0.77, 1.15)	0.52		_	HR 0.51	0.54
		Q	<u>,5</u> 1		<u>2</u>	
HCG 2014		Fav	ors Insulin	Favors S	Standard	

Carotid IMT* in ORIGIN: N=1091

Lonn et al. Diabetes Care 2013

*Mean max of 12 carotid segments

Glucose Lowering Drugs & Outcomes

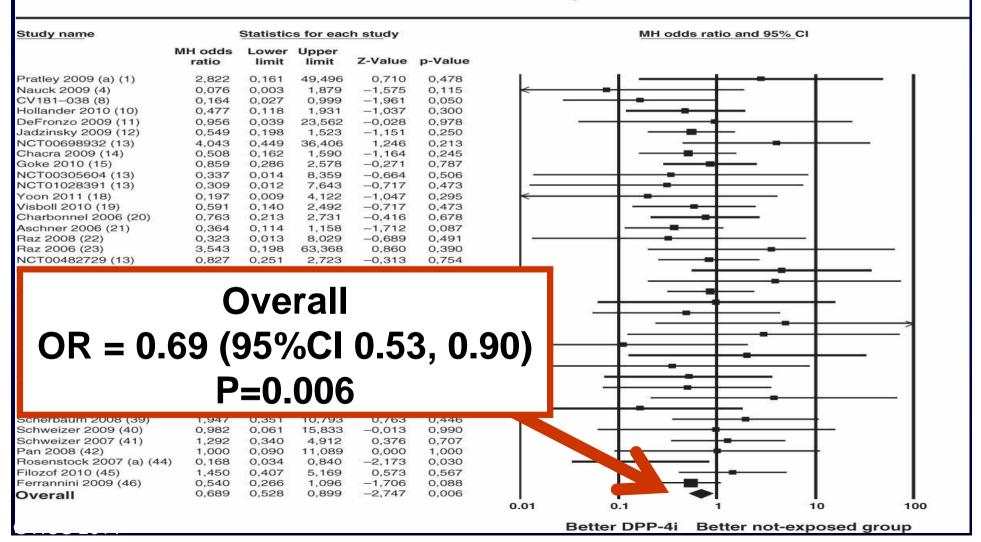
- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide

Glucose Lowering Drugs & Outcomes

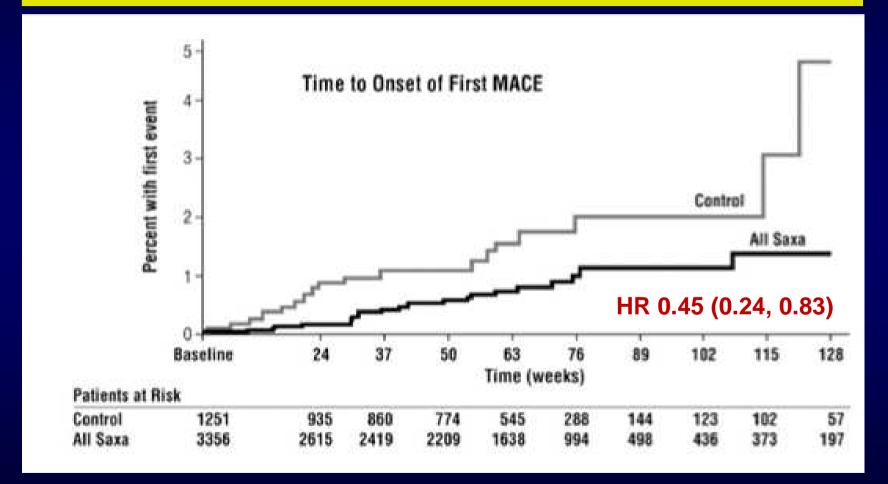
- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide


CV Effects of GLP-1

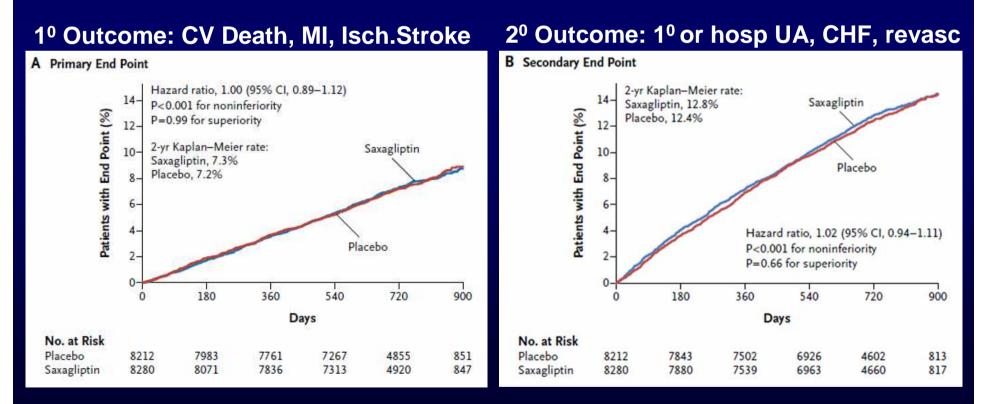
- GLP-1 receptors are widely expressed in the heart
- In LV dysfunction post MI, GLP-1 infusion may increase EF & reduce mortality (1-2 studies)
- GLP-1 & its analogs
 - increases insulin secretion & reduces FFA
 - reduces glucagon
 - modestly lowers BP
 - reduces weight
 - improves endothelial function

© HCG 2014


Meta-analysis Small DPP4i Trials Monami et al. Curr Med Res Op 2011

Major Cardiovascular Events

Meta-analysis Small Saxa Trials

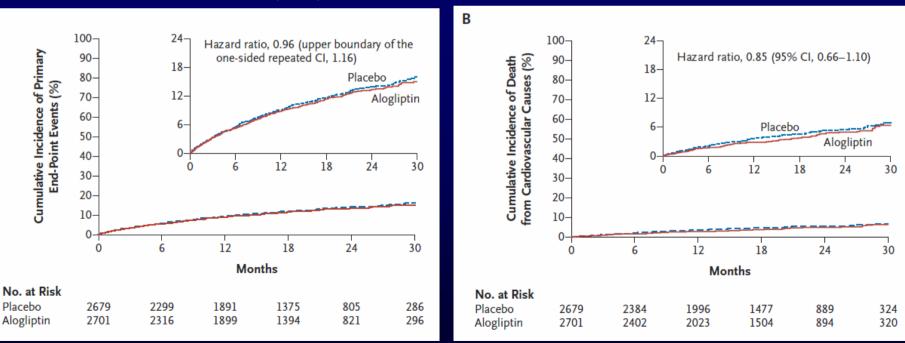

Sciricca et al. AM Heart J 2011; 818 (n=41 MACE)

© HCG 2014

SAVOR-TIMI 53 study NEJM 2013

- N = 16,492 men & women with CVD or risk factors
- Saxagliptin 5 mg/d or placebo (2.5 mg/d if eGFR < 50)
- Median F/U = 2.1 yrs

SAVOR: Other Outcomes NEJM 2013


			<u>P value</u>
Primary efficacy endpoint*	⊢ -1	<mark>-</mark> ⊣	0.99
Secondary efficacy endpoint ⁺	F	<mark>-</mark> -1	0.66
Death from any cause	H		0.15
Death from CV causes (1)	F	-	0.72
Myocardial infarction (2)	⊢●		0.52
Ischemic stroke (3)	F	- <u></u>	0.38
Hospitalization for: Unstable angina (4) Heart failure (5) Coronary revascularization (6)	 		0.24 0.007 0.18
*Composite of 1, 2 and 3 *Composite of 1–6	Saxagiidiin deller	1 1.5 2.0 Ind ratio 5% CI) Placebo better	0.10

Alogliptin: T2DM + MI or UA EXAMINE study NEJM 2013

- N = 5380 men & women with ACS 15-90 d before rand
- Alogliptin 25 mg/d or placebo (12.5 mg/d if eGFR 30-60; 6.25 if < 30)
- Median F/U = 1.5 yrs

Α

1º Outcome: CV Death, MI, Stroke

Death from CV causes

MI = myocardial infarction; UA = unstable angina

Meta-analysis Small GLP1a Trials Monami et al. Exp Diab Res 2011

Study name		Statistics for each study					MH odds ratio and 95% CI		
	MH odds ratio	Lower limit	Upper limit	Z value	P value				
Nauck et al. [31]	1.833	0.667	5.036	1.176	.24	8	22	-	
Heine et al. [34]	1.588	0.376	6.713	0.629	.529		-		
Russell-Jones# et al. [44]	2.555	0.4911	3.304	1.114	.265			-	800
NCT00360334 et al. [33]	0.983	0.136	7.096	-0.017	.986				
Diamant et al. [36]	3	0.122	74.023	0.672	.502		53 		
NCT00393718 et al. [33]	0.652	0.144	2.954	-0.556	.579		8 <u>4</u>		
Pratley et al. [50]	0.244	0.022	2.704	-1.15	.25	5. 7.	ः ्म्र		
Nauck# et al. [47]	0.497	0.099	2.492	-0.85	.396				
NCT00614120 et al. [33]	0.494	0.082	2.976	-0.769	.442		-		
Garber et al. [49]	0.496	0.069	3.542	-0.699	.484		0.00	.	8
Davis et al. [37] ersus	1.523	0.059	39.477	0.253	.8				
GI P'	la vs		ace	ho			9 1		
GLP ² OR = 0.46	1a vs 5 (95%				83)				ž.
_		%CI	0.2		83)				
OR = 0.46	5 (95% P=0.	%CI	0.2	6, 0.	.63.	-			
OR = 0.46 Nauck et al. [47] Zinman et al. [45]	5 (95% P=0.	%CI .009	0.2	6, 0.	.635 .809				
OR = 0.46 Nauck et al. [47] Zinman et al. [45] Bergenstal et al. [39]	5 (95% P=0. 2.017 1.485 0.145	%CI 009	0.2 36.059 36.644 2.823	6, 0. 0.242 -1.275	.63 .809 .202				
OR = 0.46 Nauck et al. [47] Zinman et al. [45] Bergenstal et al. [39] Marre# et al. [46]	5 (95% P=0 . ^{2.017} ^{1.485} 0.145 2.35	%CI 009 0.113 0.06 0.007 0.121	0.2 36.059 36.644 2.823 45.668	0.477 0.242 -1.275 0.564	.635 .809 .202 .572				
OR = 0.46 Nauck et al. [47] Zinman et al. [45] Bergenstal et al. [39] Marre# et al. [46] Bergenstal et al. [39]#	5 (95% P=0 . ^{2.017} ^{1.485} ^{0.145} ^{2.35} ^{0.344}	%CI 009 0.113 0.06 0.007 0.121 0.014	0.2 36.059 36.644 2.823 45.668 8.500	0.477 0.242 -1.275 0.564 -0.652	.635 .809 .202 .572 .514				
Nauck et al. [47] Zinman et al. [45] Bergenstal et al. [39] Marre# et al. [46] Bergenstal et al. [39]# ersus placebo (overall)	5 (95% P=0 . 2.017 1.485 0.145 2.35 0.344 0.459	6CI 0009 0.113 0.06 0.007 0.121 0.014 0.255	0.2 36.059 36.644 2.823 45.668 8.500 0.826	0.477 0.242 -1.275 0.564 -0.652 -2.599	.635 .809 .202 .572 .514 .009				
OR = 0.46 Nauck et al. [47] Zinman et al. [45] Bergenstal et al. [39] Marre# et al. [46] Bergenstal et al. [39]#	5 (95% P=0 . ^{2.017} ^{1.485} ^{0.145} ^{2.35} ^{0.344}	%CI 009 0.113 0.06 0.007 0.121 0.014	0.2 36.059 36.644 2.823 45.668 8.500	0.477 0.242 -1.275 0.564 -0.652	.635 .809 .202 .572 .514	0.01	0.1		

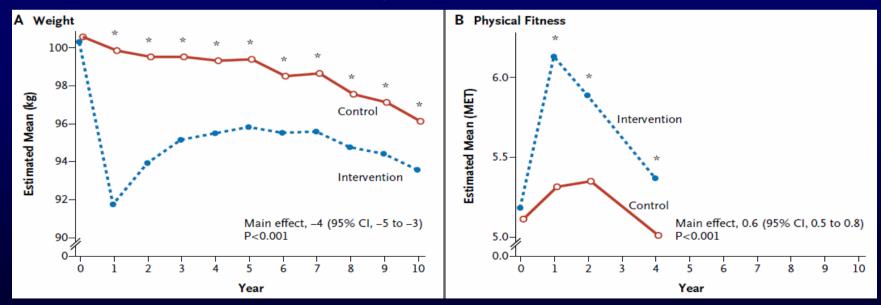
Glucose Lowering Drugs & Outcomes

- Sulfonylureas
- Metformin
- Meglitinides
- TZDs
- Insulin
- Acarbose

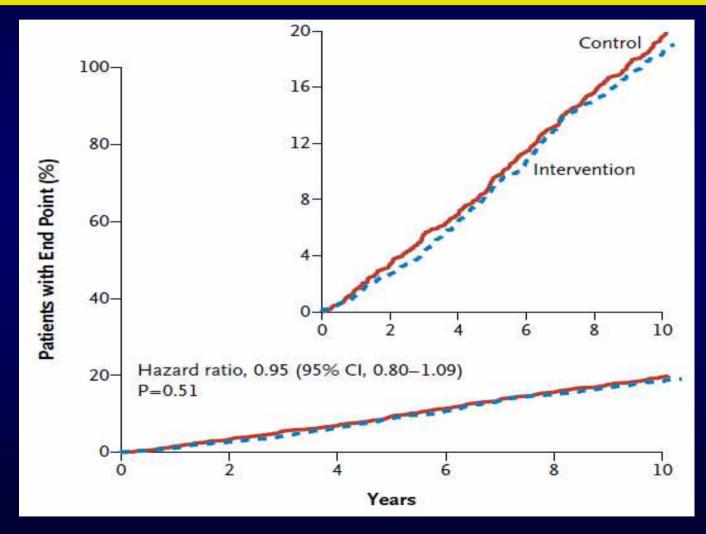
- GLP-1 analogs
- DPP4 inhibitors
- SGLT-2 inhibitors
- Other drugs
 - Colesavalam
 - Bromocriptine
 - Pramlintide

What about Lifestyle Therapies?

In people with diabetes?


• To prevent diabetes?

Look AHEAD Multicenter RCT (Look for Action for Health in Diabetes)

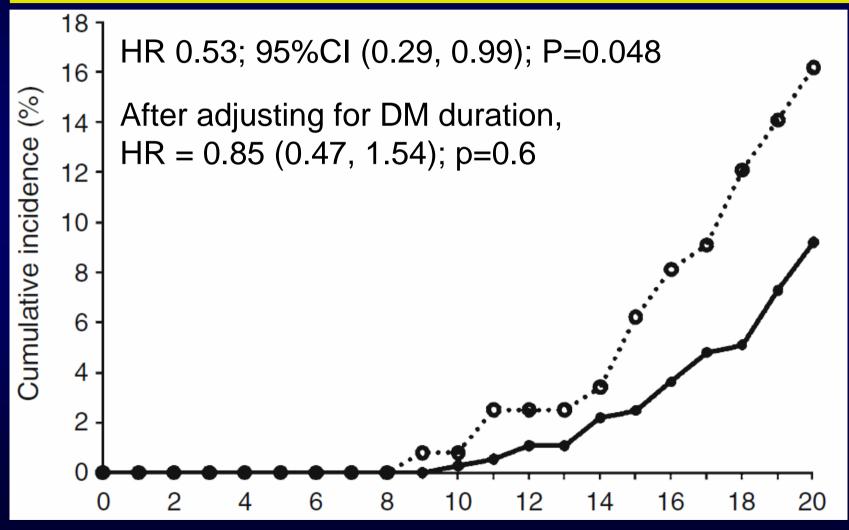

- 5145 overweight/obese individuals with type 2 DM
- 59.5% female; mean age 58.7 years
- Interventions: usual care + either.....

- Intensive lifestyle intervention (ILI) OR

NEJM 2013: 145

Look AHEAD Multicenter RCT (Look for Action for Health in Diabetes)

NEJM 2013: 145


What about Lifestyle Therapies?

In people with diabetes?

To prevent diabetes?

20 Yr Risk of Severe Retinopathy Laser, Blindness or Proliferative Retinopathy

Da Qing Trial. Diabetologia 2011; 54:300

Ongoing Large CV Outcomes Trials of Anti-diabetic Agents

Class	Participants	Drugs	Est. N
DPP4i	Diabetes	sitagliptin, linagliptin, omarigliptin	30,000
GLP1a	Diabetes	lixisenatide, liraglutide, exenatide (extended) dulaglutide, semaglutide	40,000
SGLT2i	Diabetes	canagliflozin, empagliflozin, dapagliflozin	25,000
AGI	IGT	acarbose	7,500
TZD	Insulin Resistant	pioglitazone	4,000

Gerstein HC, Circulation 2013; 128(8):777-9

Summary of the Best <u>RCT</u> Evidence

- Intensive glucose lowering in new type 2 DM reduces long-term risk of CVD & mortality
- Intensive glucose lowering in advanced type 2 DM has modest CVD benefits but ACCORD noted a mortality risk after 3.5 yrs
- 2 commonly used strategies to lower glucose (insulin sensitization vs. provision) have similar effects on CVD

Summary of the Best <u>RCT</u> Evidence

- Metformin may have a mortality benefit
- Lifestyle approaches may not be better than drugs
- Several ongoing studies are testing novel strategies
- This research is crucial because....

We are always certain how to treat our patients... when we have no data.....

Final Word – Applying the Evidence

The Evidence shows what does & does not work to reduce serious outcomes in the "average patient" *little judgment is required to interpret*

The specific patient in front of you is not the "average patient" much judgment is required to assess

Clinical decisions for that patient are best based on judgment that is informed by the best evidence

Evidence without the judgment → Judgment without the evidence → Both evidence and judgment → A technician A friend..... A Physician..