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Objectives 50 

We aimed to develop and validate a prediction model, based on clinical history and examination findings 51 

on initial diagnosis of COVID-19, to identify patients at risk of critical outcomes. 52 

Methods 53 

We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for 54 

COVID-19 from 132 centers in Spain (23 March to 21 May, 2020). For the development cohort tertiary 55 

referral hospitals were selected, while the validation cohort included smaller hospitals. The primary 56 

outcome was a composite of in-hospital death, mechanical ventilation or admission to intensive care 57 

unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were 58 

screened using least absolute shrinkage and selection operator, and logistic regression was used to 59 

construct the predictive model.  60 

Results 61 

There were 10,433 patients, 7,850 in the development cohort (primary outcome 25.1%, 1,967/7,850) 62 

and 2,583 in the validation cohort (outcome 27.0%, 698/2,583). The PRIORITY model included: age, 63 

cardiovascular disease, chronic kidney disease, dyspnea, tachypnea, confusion, systolic blood pressure, 64 

and SpO2≤93% or oxygen requirement. The model showed high discrimination for critical illness in both 65 

the development (C-statistic 0.823; 95% confidence interval [CI] 0.813, 0.834) and validation (C-statistic 66 

0.794; 95% CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on 67 

this model (https://www.evidencio.com/models/show/2344). 68 

Conclusions 69 

The PRIORITY model, based on easily-obtained clinical information, had good discrimination and 70 

generalizability for identifying COVID-19 patients at risk of critical outcomes. 71 

  72 
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INTRODUCTION 73 

Coronavirus disease 2019 (COVID-19) has spread globally, with a clinical spectrum ranging from an 74 

asymptomatic state to critical illness [1-3]. Notably, Spain was one of the countries with the highest 75 

incidence of COVID-19 during the first pandemic peak [4]. To optimize the use of limited healthcare 76 

resources, it would be essential to identify, as early as possible, those patients who are at high risk of 77 

progressing to critical illness. 78 

To date, studies of COVID-19 prognostic factors have focused on laboratory measurements and 79 

radiological examinations obtained following admission [5-15], which are not available in outpatient or 80 

resource-limited settings. Recently published well-developed models tend not to include clinical 81 

variables obtained from history and examination carried out on initial assessment [9-13]. Where one 82 

machine learning model has addressed basic clinical features, it has narrowed down the prediction to 83 

the mortality outcome only and lacks wider generalizability [16]. Furthermore, a critical appraisal of the 84 

COVID-19 models has shown poor reporting and high risk of bias [14]. 85 

Prediction models based on easy-to-collect data have previously been developed for other infectious 86 

diseases, e.g. meningitis and pneumonia [17-19]. As a global health emergency, management of COVID-87 

19 would benefit from a prediction model that could be readily applied for initial diagnosis. Therefore, 88 

we developed and externally validated a prediction model, based on easily obtained clinical measures at 89 

presentation with confirmed COVID-19 diagnosis, to identify patients at risk of developing critical 90 

outcomes. 91 

METHODS 92 

Study design and data source 93 
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This study was based on the SEMI (Sociedad Española de Medicina Interna) COVID-19 Registry [20]. It is 94 

an ongoing multicenter nationwide cohort of consecutive patients hospitalized for COVID-19 across 95 

Spain. Eligibility criteria were age ≥ 18 years, confirmed diagnosis of COVID-19, defined as a positive 96 

result on real-time reverse-transcription-polymerase-chain-reaction (RT-PCR) for the presence of SARS-97 

CoV-2 in nasopharyngeal swab specimens or sputum samples, first hospital admission for COVID-19, and 98 

hospital discharge or in-hospital death [20]. The SEMI-COVID-19 Registry was approved by the Provincial 99 

Research Ethics Committee of Málaga (Spain) and the Institutional Research Ethics Committees of each 100 

participating hospital. 101 

For the study, we retrieved from the Registry clinical baseline data, history of previous medication, and 102 

comorbidities collected on admission, as well as complications during hospitalization and status at 103 

discharge. We used data from patients admitted in 132 hospitals between March 23 and May 21, 2020. 104 

We chose hospital complexity as the criterion to assess the transportability of the prognostic model in a 105 

setting other than the one in which it was derived [21, 22]. Patients admitted to tertiary referral 106 

hospitals (≥300 beds, according to the Ministry of Health of Spain [23]) were selected for the 107 

development cohort, while patients from smaller hospitals (<300 beds) were included in a separate 108 

validation cohort. 109 

Outcome description 110 

The primary outcome, critical illness during hospitalization, was defined as the composite of in-hospital 111 

death, mechanical ventilation or admission to intensive care unit (ICU), according to previously 112 

published studies [10, 24-25]. 113 

Potential predictors 114 

To develop a predictive model based only on easily measurable variables registered at admission, we 115 
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considered clinical signs and symptoms, demographic variables, and medical history. An initial list of 29 116 

candidate variables was selected based on review of the existing evidence [5-16], clinical plausibility and 117 

relevance to clinical care. To improve consensus on model applicability, a 1-round online questionnaire 118 

was conducted among a multidisciplinary panel of 24 physicians involved in COVID-19 clinical 119 

management at nursing homes, emergency departments, primary care centers and hospitalization 120 

wards (6 per each setting). The panelists were asked to rate (on a 9-point Likert scale) the 121 

availability/reliability of each predictor, its ability to predict the outcome, the best way to merge 122 

predictors of rare occurrence, and the maximum number of variables the model should contain. 123 

Agreement was considered when ≤7 panelists rated outside the 3-point region containing the median 124 

[26].  125 

Statistical analysis 126 

The predictive model, called PRIORITY, was presented as the formula for estimating the probability of 127 

COVID-19 critical illness outcome, as well as an associated web-based calculator. Patients’ 128 

characteristics were summarized as frequencies and percentages or mean and standard deviation. 129 

Statistical analysis was performed using R v4.0.0, with mice, mfp, glmnet, pROC, rms and rmda 130 

packages. 131 

Model development: Missing values in the potential predictors were imputed using single imputation, a 132 

reasonable alternative to multiple imputation when dealing with relatively few missings [27]. A 133 

stochastic single imputation dataset was created for both cohorts (development and validation) through 134 

multiple imputation by chained equations. Quantitative variables were kept as continuous to avoid loss 135 

of prognostic information, and non-linear relationships were modelled by multivariate fractional 136 

polynomials with a maximum of 2 degrees of freedom [28]. The least absolute shrinkage and selection 137 

operator (LASSO) was the feature selection method used to reduce the number of predictors down to 138 
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the maximum agreed by the expert panel [29]. Briefly, the potential predictors were entered into the 139 

LASSO regularization process, which penalizes the coefficients by gradually shrinking them to zero. We 140 

selected the penalty parameter (λ) that minimized the deviance within the given maximum number of 141 

predictors. Those variables with non-zero coefficients were retained for risk estimation using a logistic 142 

regression model. Coefficients were presented as odds ratios (OR) and 95% confidence intervals (CI). 143 

Model performance: Nagelkerke's R2 and Brier score were used as overall performance measures. We 144 

assessed the discriminative ability of the model using the C-statistic, calculated as the area under the 145 

Receiver Operating Characteristic curve, with 95% CI. Calibration of the model was visually assessed by 146 

plotting deciles of predicted vs. observed probabilities, and the calibration slope with 95% CI was 147 

calculated [22]. 148 

Model validation: Internal validation was carried out to assess optimism-corrected performance by 149 

repeating the entire model development over 1,000 bootstrap samples drawn from the development 150 

cohort [27]. We externally validated the model in a separate cohort of patients admitted at less-complex 151 

hospitals to evaluate model transportability [21]. Within this validation cohort, we reassessed model 152 

performance and compared its discrimination ability with models based on oxygen saturation and/or 153 

age, the most discriminating univariate predictors for in-hospital mortality previously reported [15]. We 154 

also undertook a decision curve analysis, a method to ascertain the adequacy of prediction models 155 

based on the relative value of benefits (true positives) and harms (false positives) [30]. We plotted the 156 

net benefit of the models for the full range of critical illness probability thresholds. 157 

Sensitivity analysis: To assess the impact of assumptions adopted in the model development, we carried 158 

out a complete-case analysis, using only those patients with complete data in the potential predictors. 159 

We also developed models without restricting the maximum number of predictors (λ at one-standard-160 

error of the minimum) or using linear continuous predictors instead of non-linear terms. 161 
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RESULTS 162 

We considered data from 10,433 patients included in the SEMI-COVID-19 Registry. The development 163 

cohort included 7,850 patients, of which 1,967 (25.1%) presented critical illness (650 [8.3%] admitted to 164 

the ICU and 1,598 [20.4%] died). The mean age was 65.8 ± 16.4 years and 57.2% (4,483/7,834) were 165 

male, ageusia/anosmia, asthenia/anorexia, headache, gastrointestinal symptoms were excluded. 166 

Consensus was achieved for including a range between 5 and 9 variables in the final model. For 167 

transparency, univariate analysis is shown on Supplementary Table S1, even though it was not part of 168 

the model development process. The 21 potential predictors were included in the LASSO selection 169 

process, retaining a subset of 9 variables as the best predictors of critical illness (Supplementary Figure 170 

S1). A multivariable logistic regression model was then fitted with these 9 variables. All of them, except 171 

for moderate or severe dependency, were statistically significant (Table 2).  172 

Based on the logistic regression model, the probability of critical COVID-19 illness could be calculated as: 173 

Probability (%) = 100/(1 + exp(-z)), where z = -4.665 + 2.663·[(Age/100)2] + 0.164·[Dependency] + 174 

0.316·[Cardiovascular disease] + 0.586·[Chronic kidney disease] + 0.504·[Dyspnea] + 175 

0.844·[1/(SBP/100)2] + 0.911·[Tachypnea] + 1.200·[SpO2 ≤ 93% or oxygen requirement] + 176 

0.681·[Confusion].  177 

All predictors were coded as binary variables (1 when present and 0 when absent) except for age (years) 178 

and systolic blood pressure (SBP, mmHg). We also developed an online calculator based on this model 179 

(Supplementary Figure S2), accessible at https://www.evidencio.com/models/show/2344. 180 

In the development cohort, the PRIORITY model had an R2 of 0.347 and a Brier score of 0.138. The 181 

apparent C-statistic was 0.823 (95% CI 0.813, 0.834) (Figure 1a). After bootstrap internal validation, 182 

optimism-corrected C-statistic was 0.821 (95% CI 0.810, 0.832). The model showed good calibration 183 
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across the range of predicted probabilities within the development cohort (calibration slope 0.996, 95% 184 

CI 0.989, 0.999; Supplementary Figure S3a). 185 

External validation 186 

The validation cohort included 2,583 patients, of which 698 (27.0%) presented critical illness (200 [7.7%] 187 

admitted to the ICU and 594 [23.0%] died). The mean age was 69.5 ± 16.0 years, 54.8% (1,415/2,580) 188 

were male (Table 1). The PRIORITY model showed good discrimination for critical illness within the 189 

validation cohort (C-statistic 0.794, 95% CI 0.775, 0.813) (Figure 1b), and a calibration slope of 0.875, 190 

95% CI 0.790, 0.960 (Supplementary Figure S3b). 191 

Our model compared well against the risk stratification based on univariate models including age (C-192 

statistic 0.707, 95% CI 0.686, 0.729) or SpO2≤93%/oxygen requirement at admission (C-statistic 0.652, 193 

95% CI 0.635, 0.670) as sole predictors. Likewise, the PRIORITY model had better discrimination ability 194 

than the model including both age and SpO2≤93%/oxygen supply (C-statistic 0.751, 95% CI 0.731, 0.771). 195 

Additionally, decision curve analysis showed that the PRIORITY model had higher net benefit across a 196 

wide range of threshold probabilities for developing critical illness compared to risk stratification using 197 

age and/or SpO2≤93%/oxygen supply (Figure 2). 198 

Sensitivity analysis 199 

We carried out a complete-case analysis selecting as development cohort the 5,513 patients with 200 

complete data on the 21 potential predictors and the outcome. The resulting model had the same 201 

predictors as the PRIORITY model with apparent C-statistic 0.813 (95% CI 0.800, 0.826) and calibration 202 

slope 0.993 (95% CI 0.986, 0,997). Next, we fitted a new model with no restriction in maximum number 203 

of variables, resulting in a model which added sex, diabetes mellitus, malignancy, immunocompromised 204 
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status, pulmonary rales, and heart rate cubed to the predictors in the PRIORITY model. C-statistic was 205 

0.831 (95% CI 0.821, 0.842) and slope 0.990 (95% CI 0.986, 0,996). Likewise, we fitted an alternative 206 

model using linear continuous predictors instead of non-linear terms, which included sex but excluded 207 

the systolic blood pressure. C-statistic was 0.823 (95% CI 0.812, 0.833) and slope 0.994 (95% CI 0.988, 208 

0.999). 209 

DISCUSSION 210 

We developed and validated a new clinical risk model to predict COVID-19 critical illness based on nine 211 

simple clinical features easily available on initial assessment, which would be useful in resource-limited 212 

or out-of-hospital settings without access to other complementary tests. The model was well calibrated, 213 

had good discrimination, and performed robustly in an external validation cohort. Moreover, it showed 214 

a potential clinical benefit in a variety of scenarios covering different healthcare situations over a range 215 

of threshold probabilities for critical illness. The web-based calculator can facilitate its immediate 216 

application for frontline clinicians. 217 

Previously, an external validation of 22 prognostic models showed that none of the multivariate models 218 

offered incremental value for patient stratification compared to oxygen saturation or age [15]. In this 219 

regard, the PRIORITY model showed higher discriminative ability and net benefit than age and/or oxygen 220 

saturation. Additionally, despite its simplicity, our model had a similar performance to previously 221 

published prognostic tools including laboratory and imaging tests [9-16]. 222 

It is worth noting that the PRIORITY model could be applied in triage, using easily measurable variables 223 

available in settings without access to laboratory or radiology tests, identifying high-risk patients for 224 

referral to hospital. This model could be useful for supporting clinical management decisions over a 225 

range of risk thresholds for critical illness which could be considered as relevant in clinical practice. The 226 
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choice of thresholds will vary across different regions, according to changing epidemiological situations 227 

and availability of health resources. For example, under pandemic peak pressure or low-resource 228 

healthcare systems, policy-makers may consider a cut-off point up to 20%, a threshold that will be 229 

associated with higher reduction in unnecessary critical care admissions. However, at low risk of 230 

overwhelming the critical care capacity, a lower threshold may be considered at the expense of 231 

unnecessary referrals. We recommend objectively defining specific cut-off points considering the 232 

circumstances and the availability of health resources.  233 

This study has several methodological strengths maximizing internal and external validity [23]. To the 234 

best of our knowledge, this is the first generalizable COVID-19 predictive model built with simple clinical 235 

information excluding imaging and laboratory data. We developed and validated the model in a large 236 

multicenter, national cohort. The methodology was rigorous, avoiding data-driven predictor selection 237 

and biases that affected previous studies [14]. The practical application of the model was maximized by 238 

forging an agreement among an expert panel on key issues. Moreover, the model was validated in a 239 

separate cohort of patients admitted in smaller hospitals, showing transportability to a setting with a 240 

different level of healthcare [21, 22].  241 

The strength of our findings should be interpreted in light of some limitations. First, although we 242 

carefully selected easily available clinical and demographic variables, the data were collected at the time 243 

of hospital admission, which represents an important selection bias that would require further studies in 244 

an outpatient setting. Second, it could be suggested that, taking into account the situation of healthcare 245 

pressure, data quality may be affected. In this regard, it is notable that in this study missing data were 246 

relatively low and we used imputation to reduce their impact. Third, since the COVID-19 pandemic has 247 

demonstrated significant differences between countries and time periods, it could affect the 248 

applicability of the model to other settings. However, we considered this early pandemic period in Spain 249 
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to reflect a scenario with an overwhelmed healthcare system, where our predictive model could be 250 

particularly useful. Nevertheless, further studies introducing factors such as viral strains, healthcare 251 

system actions, new treatments, or vaccination, could improve the applicability of the PRIORITY model. 252 

Lastly, even though we compared the net benefit of using the model with discrimination based on 253 

oxygen saturation and/or age, its real clinical usefulness would require comparison with the best 254 

existing scores or the clinician's decision. 255 

In summary, we developed and validated a new prediction model, called PRIORITY, to estimate the risk 256 

of critical illness in patients with COVID-19 based on nine clinical variables easily measurable in 257 

resource-limited or out-of-hospital settings. The study could provide underpinning evidence to inform 258 

decision-making in health systems under pandemic pressure. 259 

 260 
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TABLES 378 

Table 1. Demographic and clinical characteristics among patients included in the development and validation 

cohorts. 

 

Development cohort Validation cohort 

No of patients (%) 

or mean ± SD 
Total No (%) 

No of patients (%) 

or mean ± SD 
Total No (%) 

Characteristics of the population 

 Critical illness 1967 (25.1%) 7850 (100%) 698 (27.0%) 2583 (100%) 

 Age [years] 65.8 ± 16.4 7816 (99.6%) 69.5 ± 16.0 2575 (97.3%) 

 Male 4483 (57.2%) 7834 (99.8%) 1415 (54.8%) 2580 (99.9%) 

 Ethnicity Caucasian 6836 (89.1%) 

7677 (98.8%) 

2340 (91.0%) 

2572 (99.6%) Latino 693 (9.0%) 193 (7.5%) 

Other 148 (1.9%) 39 (1.5%) 

 Smoking history Never  5270 (70.9%) 

7433 (94.7%) 

1625 (65.7%) 

2475 (95.8%) Former smoker 1764 (23.7%) 718 (29.0%) 

Active Smoker 399 (5.4%) 139 (5.3%) 

Medical history 

 Obesity 1665 (23.7%) 7012 (89.3%) 584 (24.3%) 2401 (93.0%) 

 Hypertension 3803 (48.6%) 7833 (99.8%) 1444 (56.1%) 2576 (99.7%) 

 Diabetes mellitus 1440 (18.4%) 7820 (99.6%) 509 (19.8%) 2570 (99.5%) 

 Cardiovascular disease 1974 (25.3%) 7800 (99.4%) 806 (31.7%) 2545 (98.5%) 

 Pulmonary diseases  1625 (20.9%) 7776 (99.1%) 576 (22.6%) 2583 (98.9%) 

 Severe chronic kidney disease  488 (6.2%) 7825 (99.7%) 163 (6.3%) 2583 (99.7%) 

 Malignancy 793 (10.2%) 7803 (99.4%) 259 (10.1%) 2571 (99.5%) 

 Immunocompromised status   650 (8.6%) 7549 (96.2%) 187 (7.6%) 2473 (95.7%) 

 Dependency (moderate/severe) 1129 (14.7%) 7701 (98.1%) 605 (23.7%) 2555 (98.9%) 

Symptoms at admission 

 Fever  5138 (67.0%) 7663 (97.6%) 1670 (65.6%) 2544 (98.5%) 

 Dyspnea 4427 (56.7%) 7805 (99.4%) 1523 (59.4%) 2562 (99.2%) 

Clinical signs and physical exploration at admission 

 SBP [mmHg] 129.0 ± 21.5 7430 (94.6%) 127.6 ± 21.0 2451 (94.9%) 

 HR [beats/minute] 88.6 ± 17.4 7500 (95.5%) 87.5 ± 17.5 2504 (96.9%) 

 Tachypnea (> 20 breaths/min) 2271 (29.9%) 7604 (96.9%) 879 (35.1%) 2504 (96.9%) 

 SpO2 ≤ 93% or oxygen requirement 

at presentation 
4152 (52.9%) 7842(99.9%) 1605 (62.1%) 2583 (100%) 

 Pulmonary rales 4630 (60.7%) 7626 (97.1%) 1588 (63.6%) 2495 (96.6%) 

 Confusion 849 (11.0%) 7736 (98.5%) 384 (15.1%) 2546 (98.6%) 

SD: standard deviation. 379 
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Obesity is defined as Medical history or body mass index ≥ 30 kg/m2. 380 
Cardiovascular disease: history of cerebrovascular disease, peripheral arterial disease, myocardial infarction, angina pectoris, heart failure or 381 
atrial fibrillation. 382 
Pulmonary diseases: chronic obstructive pulmonary disease, obstructive sleep apnea/hypopnea syndrome and asthma. 383 
Severe chronic kidney disease: History of serum creatinine level > 3 mg/dl or history of dialysis. 384 
Malignancy: History of solid tumor, leukemia or lymphoma.  385 
Immunocompromised status: History of autoimmune diseases, solid organ transplant recipients, HIV infection or previous immunosuppressive 386 
treatment including systemic steroids. 387 
Dependency (moderate/severe): moderate or severe dependency for activities of daily living (Barthel index score <60).Fever: Temperature ≥ 388 
38oC or history of fever. 389 
HR: Heart rate. 390 
SBP: Systolic blood pressure.  391 
SpO2: Peripheral oxygen saturation. 392 

 393 

Table 2. Multivariate logistic regression of critical illness prediction in COVID-19. 

Predictors Odds ratio 95% CI 

(Age/100)
2
 [Age in years]* 14.339 10.054, 20.532 

Cardiovascular disease  1.372 1.195, 1.573 

Severe chronic kidney disease 1.797 1.433, 2.252 

Dyspnea 1.655 1.451, 1.891 

1/(SBP/100)
2
 [SBP in mmHg]* 2.326 1.837, 2.951 

Tachypnea (>20 breaths/min) 2.487 2.192, 2.824 

SpO2 ≤ 93% or oxygen requirement 3.320 2.889, 3.819 

Confusion 1.976 1.642, 2.380 

Dependency (Moderate or severe) 1.178 0.989, 1.404 

Predictors in the PRIORITY model retained after LASSO feature selection. Model coefficients were derived from a multivariate logistic 394 
regression, and presented as odds ratios (OR) and 95% confidence intervals (95% CI). 395 
Variables entered into the LASSO feature selection process were: age as a squared term, sex, ethnicity, smoking history, obesity, hypertension, 396 
diabetes mellitus, cardiovascular disease, pulmonary diseases, severe chronic kidney disease, malignancy, immunocompromised status, 397 
dependency, fever, dyspnea, systolic blood pressure (SBP) as the inverse of a quadratic term, heart rate (HR) as a cubic term, tachypnea, 398 
peripheral oxygen saturation (SpO2) ≤ 93% on room air or oxygen requirement at presentation, pulmonary rales, and confusion. All predictors 399 
were coded as binary variables (1 when present and 0 when absent) except for age (years), SBP (mmHg) and HR (bpm). 400 
* Continuous predictors modelled as fractional polynomial terms, including rescaling when the range of values of the predictor was reasonably 401 
large. As interpretability of the effect of non-linear continuous predictors can be difficult, linear local approximations of ORs for 10-unit 402 
variations are provided at selected values. 403 
ORs for age (10-year increments): OR (50/40) = 1.271; OR (70/60) = 1.414; OR (90/80) =1.573. 404 
ORs for SBP (10 mmHg decreases): OR (110/120) = 1.118; OR (90/100) = 1.219; OR (70/80) = 1.497.  405 
Approximated ORs are provided for illustrative purposes only and were not used for making predictions. 406 
 407 

 408 

 409 

FIGURE LEGENDS 410 

Figure 1. Discriminatory ability of the PRIORITY model in the development (a) and validation (b) cohorts. 411 
Discriminative ability was assessed using the C-statistic, as the area under the Receiver Operating 412 
Characteristic curve, with 95% confidence intervals (CI) computed with 1,000 bootstrap replicates. 413 
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 414 

Figure 2. Decision curve analysis within the validation cohort. Clinical usefulness of the PRIORITY model 415 
compared to risk stratification based on oxygen saturation (binary: SpO2 ≤ 93% or oxygen requirement) 416 
and/or age (quadratic term). The x-axis represents the whole range of decision threshold probabilities 417 
for critical illness (pt) and the y-axis the net benefit (NB). NB calculated as: True positives/N – (False 418 
positives/N)*(pt/(1-pt)), with N total sample size. 419 

 420 

 421 

 422 

 423 
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